Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Prairie Pothole Region (PPR) of North America contains millions of small depressional wetlands with some of the highest methane (CH4) fluxes ever reported in terrestrial ecosystems. In saturated soils, two conventional paradigms are (a) methanogenesis is the final step in the redox ladder, occurring only after more thermodynamically favorable electron acceptors (e.g., sulfate) are reduced, and (b) CH4is primarily produced by acetoclastic and hydrogenotrophic pathways. However, previous work in PPR wetlands observed co‐occurrence of sulfate‐reduction and methanogenesis and the presence of diverse methanogenic substrates (i.e., methanol, DMS). This study investigated how methylotrophic methanogenesis—in addition to acetoclastic and hydrogenotrophic methanogenesis—significantly contributes to CH4flux in surface sediments and thus allows for the co‐occurrence of competing redox processes in PPR sediments. We addressed this aim through field studies in two distinct high CH4emitting wetlands in the PPR complex, which coupled microbial community compositional and functional inferences with depth‐resolved electrochemistry measurements in surficial wetland sediments. This study revealed methylotrophic methanogens as the dominant group of methanogens in the presence of abundant organic sulfate esters, which are likely used for sulfate reduction. Resulting high sulfide concentrations likely caused sulfide toxicity in hydrogenotrophic and acetoclastic methanogens. Additionally, the use of non‐competitive substrates by many methylotrophic methanogens allows these metabolisms to bypass thermodynamic constraints and can explain co‐existence patterns of sulfate‐reduction and methanogenesis. This study demonstrates that the current models of methanogenesis in wetland ecosystems insufficiently represent carbon cycling in some of the highest CH4emitting environments.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Keshavmurthy, Shashank (Ed.)The plasticity of some coral-associated microbial communities under stressors like warming and ocean acidification suggests the microbiome has a role in the acclimatization of corals to future ocean conditions. Here, we evaluated the acclimatization potential of coral-associated microbial communities of four Hawaiian coral species (Porites compressa,Porites lobata,Montipora capitata, andPocillopora acuta) over 22-month mesocosm experiment. The corals were exposed to one of four treatments: control, ocean acidification, ocean warming, or combined future ocean conditions. Over the 22-month study, 33–67% of corals died or experienced a loss of most live tissue coverage in the ocean warming and future ocean treatments while only 0–10% died in the ocean acidification and control. Among the survivors, coral-associated microbial communities responded to the chronic future ocean treatment in one of two ways: (1) microbial communities differed between the control and future ocean treatment, suggesting the potential capacity for acclimatization, or (2) microbial communities did not significantly differ between the control and future ocean treatment. The first strategy was observed in bothPoritesspecies and was associated with higher survivorship compared toM.capitataandP.acutawhich exhibited the second strategy. Interestingly, the microbial community responses to chronic stressors were independent of coral physiology. These findings indicate acclimatization of microbial communities may confer resilience in some species of corals to chronic warming associated with climate change. However,M.capitatagenets that survived the future ocean treatment hosted significantly different microbial communities from those that died, suggesting the microbial communities of the survivors conferred some resilience. Thus, even among coral species with inflexible microbial communities, some individuals may already be tolerant to future ocean conditions. These findings suggest that coral-associated microbial communities could play an important role in the persistence of some corals and underlie climate change-driven shifts in coral community composition.more » « less
-
Abstract Disturbances cause rapid changes to forests, with different disturbance types and severities creating unique ecosystem trajectories that can impact the underlying soil microbiome. Pile burning—the combustion of logging residue on the forest floor—is a common fuel reduction practice that can have impacts on forest soils analogous to those following high-severity wildfire. Further, pile burning following clear-cut harvesting can create persistent openings dominated by nonwoody plants surrounded by dense regenerating conifer forest. A paired 60-year chronosequence of burn scar openings and surrounding regenerating forest after clear-cut harvesting provides a unique opportunity to assess whether belowground microbial processes mirror aboveground vegetation during disturbance-induced ecosystem shifts. Soil ectomycorrhizal fungal diversity was reduced the first decade after pile burning, which could explain poor tree seedling establishment and subsequent persistence of herbaceous species within the openings. Fine-scale changes in the soil microbiome mirrored aboveground shifts in vegetation, with short-term changes to microbial carbon cycling functions resembling a postfire microbiome (e.g. enrichment of aromatic degradation genes) and respiration in burn scars decoupled from substrate quantity and quality. Broadly, however, soil microbiome composition and function within burn scar soils converged with that of the surrounding regenerating forest six decades after the disturbances, indicating potential microbial resilience that was disconnected from aboveground vegetation shifts. This work begins to unravel the belowground microbial processes that underlie disturbance-induced ecosystem changes, which are increasing in frequency tied to climate change.more » « less
An official website of the United States government
